期刊专题

10.3772/j.issn.1002-0470.2023.06.004

基于离散化动态图的协同过滤推荐算法

引用
基于图卷积网络(GCN)模型在学习用户/物品表示方面表现出了强大的性能,给传统的协作过滤(CF)算法带来了新的研究突破.然而,现有的基于GCN的CF方法仍然都是针对静态图建模,而在实际场景中,用户与物品的交互不是一成不变的,会随着时间的推移而持续演化;GCN中的过平滑问题会极大地限制现有推荐算法的表示学习建模.为解决上述问题,提出了基于动态图的协同过滤算法(DynGCF),其目的是通过同时捕获图的结构和时态演化信息来学习用户和物品的嵌入表示.DynGCF首先采用GCN学习每个离散快照图上的用户/物品嵌入,然后应用时间卷积网络(TCN)和自注意力机制学习,最终嵌入表示.为缓解过平滑问题,本文改进了传统GCN中的关键模块,即邻域聚合,通过在1 阶交互图和2 阶共现图建模用户和物品的交互.在4 个真实数据集上与基于GCN的CF方法和动态图的基线方法对比,验证了DynGCF的性能提升,并分析验证了改进的方法能有效缓解过平滑问题.

推荐系统、动态图、图卷积网络(GCN)、协同过滤(CF)

33

TP301.6;F713.36;TP18

北京市科技计划;河北省科技计划资助项目

2023-08-03(万方平台首次上网日期,不代表论文的发表时间)

共11页

591-601

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

33

2023,33(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn