期刊专题

10.3772/j.issn.1002-0470.2022.09.001

基于位串行计算的动态精度神经网络处理器

引用
针对当前神经网络动态精度计算系统在周期性的模型重训练和动态精度切换的过程中会引入大量的计算和访存开销问题,提出了基于串行位计算的动态精度神经网络处理器(DPNN),其可支持任意规模、任意精度的神经网络模型;支持以非重训练的方式对模型数据精度进行细粒度调整,并消除了动态精度切换时因权值bit位重叠造成的重复计算与访存.实验结果表明,相较于自感知神经网络系统(SaNNs)的最新进展之一MinMaxNN,DPNN可使计算量平均降低1.34~2.52倍,访存量降低1.16~1.93倍;相较于代表性的bit串行计算神经网络处理器Stripes,DPNN使性能提升2.57倍、功耗节省2.87倍、面积减少1.95倍.

神经网络处理器、动态精度计算、位串行计算

32

TP303;TN713.7;TP183

国家重点研发计划;国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;北京智源人工智能研究院;中国科学院稳定支持基础研究领域青年团队计划;中国科学院青年创新促进会项目

2022-12-29(万方平台首次上网日期,不代表论文的发表时间)

共13页

881-893

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

32

2022,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn