期刊专题

10.3772/j.issn.1002-0470.2022.07.003

二进制张量分解法简化神经网络推理计算

引用
针对现有的简化神经网络推理计算方法面临模型精度下滑及重训练带来的额外开销问题,本文提出一种在比特级减少乘积累加运算(MAC)的乘加操作数的二进制张量分解法(IBTF).该方法利用张量分解消除多个卷积核之间由于权值比特位重复导致的计算重复,并保持计算结果不变,即无需重训练.在比特级简化模型计算的IBTF算法与量化、稀疏等数据级简化方法正交,即可以协同使用,从而进一步减少MAC计算量.实验结果表明,在多个主流神经网络中,相较于量化与稀疏后的模型,IBTF进一步使计算量减少了3.32倍,并且IBTF在不同卷积核大小、不同权值位宽及不同稀疏率的卷积运算中都发挥了显著的效果.

神经网络、二进制张量分解(IBTF)、乘积累加运算(MAC)

32

N32;TP391.41;O347.1

国家重点研发计划;国家重点研发计划;国家重点研发计划;国家自然科学基金;国家自然科学基金

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共9页

687-695

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

32

2022,32(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn