期刊专题

10.3772/j.issn.1002-0470.2022.07.002

FNOD:基于近邻差波动因子的离群点检测算法

引用
针对现存离群点检测算法和剪枝方法存在算法精确度较低和剪枝程度小的问题,提出了一种基于近邻差波动因子的离群点检测方法.该方法首先依据离群点的相互k近邻(MUN)点数远小于参数k这一特点,提出了一种基于近邻关系的剪枝方法;然后提出近邻差的概念来刻画数据对象与其邻居点的分布特征,在变化的参数k下,离群点和正常点的近邻差的变化不同;最后采用近邻差波动衡量每个数据点的离群程度,进而检测出离群点.人工数据集和真实数据集下的实验结果表明,该算法能够有效且较为全面地检测出离群点.

数据挖掘、离群点、剪枝、相互k近邻(MUN)、近邻差波动因子

32

TP391.9;TN946;TP181

国家自然科学基金;河北省创新能力提升计划项目;四达铁路智能图像工件识别项目

2022-10-08(万方平台首次上网日期,不代表论文的发表时间)

共13页

674-686

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

32

2022,32(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn