期刊专题

10.3772/j.issn.1002-0470.2022.01.005

基于改进最大相关最小冗余的选择性集成分类器

引用
在构建选择性集成分类器时,寻找分类准确率高且差异性大的最优分类器子集至关重要.为平衡集成子集中基分类器的准确性和多样性,提出了一种基于改进最大相关最小冗余的选择性集成分类器(ImRMRSEC).首先,将基分类器对验证集的预测结果视为一个个"特征",把特征选择的思想扩展到集成分类器的约简问题中,基于最大相关最小冗余准则寻找基分类器子集.其次,引入Gram-Schmidt正交化求取"特征"的等价向量,替代原向量输入最大相关最小冗余算法中,并基于距离相关系数(DCC)衡量相关性.同时,利用序列浮动前向选择方法搜索最优子集.实验结果充分展示了所构建分类器卓越的设计性能.

选择性集成;最大相关最小冗余(mRMR);特征选择;正交化;距离相关系数(DCC)

32

国家自然科学基金;国家重点研发计划

2022-03-16(万方平台首次上网日期,不代表论文的发表时间)

共10页

40-49

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

32

2022,32(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn