期刊专题

10.3772/j.issn.1002-0470.2020.07.004

基于聚类LSTM深度学习模型的主动配电网电能质量预测

引用
针对较长时间跨度上电能质量(PQ)数据的时序性和非线性特点,提出一种基于K-means聚类和长短期记忆(LSTM)网络的主动配电网(ADN)电能质量预测方法.在构建LSTM深度学习模型的基础上,将大量的电能质量历史数据、环境因素及负荷数据以多维向量的形式进行K-means聚类,并针对每一类数据集分别使用LSTM模型进行网络的训练和性能评估,然后利用完成训练和评估的聚类LSTM网络模型进行主动配电网电能质量稳态指标项的预测.最后,通过IEEE-13节点含分布式电源的主动配电网仿真算例,分析验证了所提聚类LSTM网络法比时间序列预测法、反向传播(BP)神经网络法和标准LSTM网络法具有更优的预测性能.

电能质量(PQ)预测、深度学习、长短期记忆网络(LSTM)、K-means聚类、主动配电网(ADN)

30

国家自然科学基金;浙江省自然科学基金

2020-08-18(万方平台首次上网日期,不代表论文的发表时间)

共11页

687-697

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

30

2020,30(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn