期刊专题

10.3772/j.issn.1002-0470.2020.06.004

ECO跟踪算法中CNN分层插值及加权策略改进

引用
本文是在深度特征与相关滤波相结合的高效卷积运算符(ECO)目标跟踪算法基础上进行的改进.首先,为了提高跟踪速度,提出"浅层特征不插值,深层特征插值"的卷积神经网络(CNN)分层插值处理方法,对具有较高分辨率的浅层特征不插值,对分辨率低的深层特征进行插值计算来提高分辨率;其次,改进了样本空间分类策略,给CNN特征层分配不同的权重,突出不同特征层对样本间距离的影响,并且将所有样本信息都保留在训练样本集中;最后,应用判别尺度空间跟踪(DSST)算法提出的对目标尺度估计的方法,增加了目标尺度的候选数量,使尺度估计更加准确.实验结果验证了所设计算法的有效性.

目标跟踪、高效卷积运算符(ECO)、卷积神经网络(CNN)、相关滤波、尺度估计

30

国家自然科学基金61573305

2020-07-23(万方平台首次上网日期,不代表论文的发表时间)

共9页

570-578

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

30

2020,30(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn