期刊专题

10.3772/j.issn.1002-0470.2020.01.003

基于网络可视图的室内人体状态检测研究

引用
随着无线局域网的普及,利用无线信号对室内人员活动状态的研究越来越多,如进行无源被动的人体朝向感知等.本文提出了一种结合无线信道状态信息(CSI)和可视图(VG)复杂网络技术的室内人体朝向检测方法,首先以无线局域网中的信道状态幅度和相位信息构建时间序列数据网络,然后基于提取的网络参数和原始统计属性作为融合特征,再通过机器学习算法进行人体朝向的分类检测.为验证算法效果,本文建立了信道状态幅度和位相信息采集平台,综合多对天线数据进行了教室和办公室2种环境下的人体4朝向和8朝向检测,还讨论了K近邻(KNN)、朴素贝叶斯(NB)和支持向量机(SVM)等分类方法的时间复杂度对比.实验结果表明,本文所提出的方法和实验方案具有较高的室内人体朝向检测精度,8朝向的最佳检测精度能达到98.66%.

复杂网络、网络构建、人体状态、机器学习、可视图(VG)

30

浙江省自然科学基金LY18F010025,LY14F050004,LY13F010011

2020-04-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

23-31

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

30

2020,30(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn