期刊专题

10.3772/j.issn.1002-0470.2019.09.002

基于Kinect的动态手势识别算法改进与实现

引用
为解决隐马尔科夫模型(HMM)算法在动态手势识别中存在的准确率不高、容易受未定义手势的干扰、难以适应复杂背景等问题,本文提出了一种基于Kinect V2传感器改进的HMM动态手势识别方法.该方法进行手势分割后,以质心运动轨迹正切角的值进行均匀量化编码,通过设置概率阈值模型及编码的种类来排除未定义手势、进行动态手势识别,并对比不同实验环境下的识别效果.实验结果表明,改进后的HMM算法有效地排除了多种未定义手势,能够适应复杂背景和黑暗条件,而且能够提高对已定义手势的识别率.

Kinect V2传感器、动态手势识别、改进隐马尔科夫模型(HMM)、未定义手势、识别率

29

国家自然科学基金F2012203111;河北省高等学校科学技术研究青年基金2011139

2019-11-08(万方平台首次上网日期,不代表论文的发表时间)

共11页

841-851

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

29

2019,29(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn