10.3772/j.issn.1002-0470.2019.03.012
基于循环结构优化的Elman神经网络船舶交通流量预测
针对港口的船舶交通流量预测精度不高的问题,首次采用Elman神经网络进行船舶交通流量预测,同时引入以预测误差为条件的循环结构优化Elman神经网络,并利用前6个月数据预测后一个月数据的方式重新构建原始数据.同时,将优化后的Elman神经网络应用于芜湖港船舶交通流量的预测,并与原始的Elman神经网络、反向传播(BP)神经网络以及径向基函数(RBF)神经网络的预测结果进行误差及评价指标的分析比较.结果显示,在船舶交通流量预测方面,循环结构优化的Elman神经网络的预测误差在2%以内,小于原始Elman神经网络的3%的误差,远远小于BP神经网络的8%和RBF神经网络的6%的误差,同时优化后的Elman神经网络的各项评价指标均占据优势.表明了Elman神经网络在船舶交通流量预测方面的良好适用性,同时循环结构的优化效果明显,其预测性能更优,预测值更接近实际值,具有很大的应用价值.
水上交通、船舶交通流量、Elman神经网络、循环结构、流量预测、精度分析
29
国家自然科学基金51579025;辽宁省自然科学基金201602082
2019-05-28(万方平台首次上网日期,不代表论文的发表时间)
共7页
295-301