期刊专题

10.3772/j.issn.1002-0470.2018.09-10.012

基于Gist-SVM对车道线分类及车道线检测识别研究

引用
为了适应复杂的车道线路况的识别,提出了应用Gist-SVM机器学习对直线型-弯曲型车道线自动检测分类的方法.首先通过Gist-SVM训练2种直线型和弯曲型分类模型;然后利用测试图像的特征与训练模型进行预测学习,应用支持向量机自动分类直线型和弯曲型车道类型;最后,检测的直线型车道线图像利用加约束Hough变换进行检测识别,检测的弯曲型车道线采用多数小线段直线拟合方法拟合弯道.同时设计一种适应本文所提方法的车道线检测识别系统的界面,将该车道线检测算法整合到该系统界面内.实验结果证明,采用Gist-SVM可自动检测分类车道线类型,该算法对直线型-弯曲型车道线检测识别的错检率减少20%,提高了检测的准确性.

车道线分类、直线型-弯曲型、检测系统界面、加约束的Hough变换

28

山东省自然科学基金ZR2016EL19

2019-05-29(万方平台首次上网日期,不代表论文的发表时间)

共7页

867-873

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

28

2018,28(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn