期刊专题

10.3772/j.issn.1002-0470.2018.04.002

基于改进PSO和DE优化神经网络的电能质量扰动分类

引用
针对电能质量问题提出了基于改进粒子群优化算法(PSO)和差分进化算法(DE)相结合优化神经网络的分类方法.首先用Matlab仿真几种典型的电能质量扰动信号,再利用小波变换进行多尺度的分解,得到各尺度的能量信息作为特征向量输入BP神经网络分类器中对扰动信号进行快速、准确的分类识别.并针对传统BP算法收敛耗时长速度慢,不能保证获得全局最优等缺点,在种群分类基础上提出了一种混合粒子群与差分进化算法的新型PSO-DE算法,并利用其对神经网络进行改进.这种混合PSO-DE算法在很大程度上能弥补BP神经网络的不足,采用该算法对网络进行优化后完成电能质量扰动信号的自动分类.

改进粒子群优化算法(PSO)、差分进化算法(DE)、神经网络、电能质量、扰动分类

28

国家自然科学基金61077071;河北省自然科学基金F2016203496,F2015203413

2018-09-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

291-298

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

28

2018,28(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn