10.3772/j.issn.1002-0470.2016.05.006
导引概率图与显著特征相结合的行人目标检测
研究了仿生人眼视觉注意机制,采用目标导引概率图作为自上而下的信息,通过调制基于目标显著特征的自下而上信息,实现行人目标检测的方法.首先,对相似场景的目标样本图像提取尺度不变特征变换(SIFT)特征,基于贝叶斯公式,采用高斯混合模型(GMM)建立目标导引概率模型,利用期望最大(EM)算法和狄利克雷过程(DP)自动估计模型参数;进而,对一副待检测图像,采用已估概率模型计算图像中每一像元的目标似然性,形成导引概率图作为自上而下的信息;同时,针对行人目标,模拟中央-外周机制计算多尺度的肤色特征和竖直方向特征,形成基于目标显著特征的自下而上信息;最后,将两者结合得到候选目标区域,再通过提取候选区域的积分梯度直方图和等价的局部二值模式(LBP)特征,输入到级联支持向量机(SVM)分类器,验证并得到目标检测结果.基于实拍数据库和复旦大学-宾夕法尼亚大学行人数据库的大量实验表明,对概率模型的这种改进能显著提升行人目标预测效果,且检测算法在整体上优于传统检测算法.
视觉注意(VA)、概率引导图、显著特征、行人目标检测(PD)
26
TP3;TJ7
北京市教委2014年度科研面上基金KM201411232008;北京信息科技大学2016年度大学生科技创新资助项目
2016-11-30(万方平台首次上网日期,不代表论文的发表时间)
共11页
464-474