期刊专题

10.3772/j.issn.1002-0470.2013.01.014

基于最大化间隔准则和成对约束的鲁棒半监督聚类研究

引用
针对现有半监督最大间隔聚类算法在不同类别中有不少样本非常相似的情况下难以提高聚类准确度的问题,提出了下述解决策略:首先,基于最大化间隔准则设计一种鲁棒的成对约束损失函数,即使不同类别有较多样本非常相似,该函数仍然能有效地检测不能满足成对约束的聚类结果,并提供相应的惩罚,从而能较好地提高聚类的性能.其次,基于约束凹凸过程设计一种迭代算法进行求解.进而,基于这一策略,提出了一种新的聚类算法——鲁棒的成对约束最大化间隔聚类(BPCMMC)算法.实验结果表明,该算法能有效克服现有半监督最大间隔聚类算法的不足,其聚类错误率明显低于传统的半监督聚类算法.

半监督聚类、成对约束、最大化间隔准则、鲁棒的损失函数、约束凹凸过程(CCCP)

23

TP3;TP1

国家自然科学基金61105048,60972165,51175080;教育部博士点基金20100092120012,20110092120034;人事部留学人员科技活动择优资助基金6722000008;江苏省自然科学基金BK2010240,BK2010423

2013-05-10(万方平台首次上网日期,不代表论文的发表时间)

共6页

85-90

相关文献
评论
暂无封面信息
查看本期封面目录

高技术通讯

1002-0470

11-2770/N

23

2013,23(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn