10.3321/j.issn:1002-0470.2007.05.002
基于神经网络和方差的快速分形图像编码算法
为克服快速分形图像编码带来的解码图像质量下降问题,提出了一种神经网络与方差混合编码的快速分形图像编码算法.该算法结合图像子块复杂度与方差值的对应关系,根据每个区块的方差值大小选择适当的映射编码方法,即对于方差值相对小的区块采用方差编码以提高编码速度,对于方差值相对大的区块采用神经网络编码以提高编码质量.该算法可以较好地修正传统分形编码中由于自仿射映射结构限制所带来的解码质量偏低的问题,在大幅提高编码速度的同时,很好地保持了图像的编码质量.实验结果表明,该算法对比基本分形编码算法可以加速24倍,解码图像的质量对比方差快速分形编码算法有1.1dB的提高.同时,该算法的硬件实现比较容易,非常贴近实用化.
分形图像编码、方差、神经网络
17
TP3(计算技术、计算机技术)
国家自然科学基金60432030
2007-07-09(万方平台首次上网日期,不代表论文的发表时间)
共5页
448-452