期刊专题

10.13336/j.1003-6520.hve.20240619

基于多尺度特征提取的IES多元负荷短期联合预测

引用
为提高综合能源系统(integrated energy system,IES)多元负荷预测的精确度,综合考虑多能源相互作用机理、多元负荷耦合特性及气象因素相关性,提出了一种基于多尺度特征提取的IES多元负荷短期联合预测方法.首先,通过最大互信息系数(maximum information coefficient,MIC)研究多元负荷耦合特性及影响因素相关性,选择预测特征;其次,利用变分模态分解技术(variational mode decomposition,VMD)对输入特征进行分解,提升特征纯洁度;最后,采用卷积神经网络-双向长短期记忆神经网络(convolutional neural network-bidirectional long and short-term memory,CNN-BiLSTM)多任务学习模型进行纵向、横向特征选择,注意力(Attention)机制对重要特征差异化提取,实现多尺度特征提取,并利用雪消融优化器(snow ablation optmizer,SAO)对VMD和CNN-BiLSTM多任务学习模型进行超参数优化,以此实现IES多元负荷的联合预测.以美国亚利桑那州实测数据进行实验,结果表明,无论与单一预测方法还是与其他模型相比,所提联合预测方法的均方根误差更低、准确率更高,在IES多元负荷预测中具有更高的精确性和鲁棒性.

联合预测、多尺度特征提取、综合能源系统、多元负荷、多任务学习、雪消融优化器

50

TP391;TM715;TE1

2024-08-28(万方平台首次上网日期,不代表论文的发表时间)

共13页

2918-2930

暂无封面信息
查看本期封面目录

高电压技术

1003-6520

42-1239/TM

50

2024,50(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn