期刊专题

10.13336/j.1003-6520.hve.20211990

基于相关性和类间差异度的放电声信号特征量选择与降维

引用
为准确高效地诊断电气设备放电故障类型,实现多维特征的有效降维,提出了基于相关性和类间差异度的特征量选择与降维方法.首先,搭建模拟放电可听声信号采集平台,利用交叉小波变换分析信号的相关主成分,获得信号特征频带及其对应的离散小波重构时域分量,提取不同类型放电声信号的多维时域特征;然后,利用Pearson相关系数矩阵分析特征量之间的相关性,结合各特征类间差异度和类内离散度,优选出特征量进行识别效果检验;接着,以参数优化的支持向量机识别准确率为维度选择判据,依据准确率变化规律确定最终维度和特征;最后将该文方法与传统降维算法进行对比,并探究不同干扰模式对该文方法的影响.结果表明:所提方法相对传统降维算法保留了原始特征属性,最终所选特征的识别准确率超过96%,为特征降维提供了有效判据.

局部放电、可听声信号、交叉小波变换、类间差异度、特征降维、放电类型识别

49

TP309.1;TG146.21;TN911.2

兰州交通大学天佑创新团队;国网甘肃省电力公司电力科学研究院科技项目

2023-04-28(万方平台首次上网日期,不代表论文的发表时间)

共11页

1194-1204

相关文献
评论
暂无封面信息
查看本期封面目录

高电压技术

1003-6520

42-1239/TM

49

2023,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn