期刊专题

10.13336/j.1003-6520.hve.20200739

基于SVD和低秩RBF神经网络的局部放电信号提取方法

引用
局部放电(partial discharge,PD)特高频(ultra high frequency,UHF)信号检测过程易受到白噪声和周期性窄带干扰的严重影响.为有效提取PD UHF信号、抑制干扰,提出一种基于奇异值分解(singular value decomposition,SVD)和低秩径向基函数(radical basis function,RBF)神经网络的去噪方法.首先,将染噪局部放电信号构造为Hankel矩阵,并奇异分解到特征矩阵空间;然后,把特征矩阵中奇异值突变点设为阈值,以去除窄带干扰;最后,采用RBF神经网络逼近去干扰后的PD信号,并采用Gaussian窗滤波以提取局放信号.所提方法与逆向分离(reverse separation,RS)和形态学小波综合滤波器(morphology wavelet filter,MWF)进行对比.从仿真和实测结果表明,该方法对周期性窄带干扰和白噪声有着强抑制作用,评价指标更为显著.

局部放电;奇异值分解;神经网络;白噪声;周期性窄带干扰;高斯窗

47

TN911.7;TP391.41;TM835

2021-12-16(万方平台首次上网日期,不代表论文的发表时间)

共9页

3608-3616

暂无封面信息
查看本期封面目录

高电压技术

1003-6520

42-1239/TM

47

2021,47(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn