期刊专题

10.13336/j.1003-6520.hve.20201415

考虑不同风能特征的风电中长期电量预测方法

引用
中长期电量预测在编制中长期发电计划、提高新能源消纳以及保障电力系统电量平衡等方面发挥着重要作用.未来气候态预报信息有利于提高中长期电量预测精度,但当前中长期电量预测未能有效挖掘和利用未来气候预报信息,为此,提出了一种考虑不同风能特征的风电中长期电量预测方法,同时为提高预测模型的适应性,以风能资源气候态预报结果数据为输入,通过构建风能特征挖掘模型,实现了不同预报误差特性数据集的筛选,进而结合风电场实际发电数据,基于灰狼优化算法(grey wolf optimizer,GWO)与长短时记忆网络(long short term memory,LSTM)构建了适应性预测模型.将所提法与当前预测方法相比,结果显示:所提出的中长期电量预测方法实现了沿海某风电场及区域总电量预测,且预测模型的性能更优.研究结果验证了所提方法的有效性和先进性.

气候态预报、风能特征、中长期电量预测、特征挖掘、灰狼优化、深度学习、适应性模型

47

TM734;TP391;TV737

国家重点研发计划;国家电网有限公司总部科技项目

2021-06-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

1224-1232

相关文献
评论
暂无封面信息
查看本期封面目录

高电压技术

1003-6520

42-1239/TM

47

2021,47(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn