10.13336/j.1003-6520.hve.20160907043
基于改进多分类算法和相关向量机的电力变压器故障诊断方法
针对电力变压器故障诊断问题实际特点和支持向量机方法的条件限制,提出一种基于改进多分类算法和相关向量机的智能故障诊断方法.该方法综合标准一对一和一对余多分类算法的结构特点,改进现有一对一算法的最大投票策略,提出一种全新的两层最大投票策略,并在此基础上将k类多分类问题转化为k(k-1)/2个三分类子问题,最终设计出一种一对一对余的改进多分类算法;同时在三分类子问题上,采用综合性能较支持向量机更为优异的相关向量机作为二类分类器,并基于一对一算法完成三分类,进而实现k类多分类.电力变压器故障诊断实例结果和理论分析表明,该智能故障诊断方法具有以下明显优势:可有效提升诊断正确率5%以上,可剔除绝大部分无效投票从而优化投票结果,可显著增强样本诊断可信度水平,可提高识别未知故障类型精度20%以上,并具有诊断多重故障类型性能.
故障诊断、相关向量机、一对一、一对余、多分类、电力变压器
42
国家自然科学基金61271153.Project supported by National Natural Science Foundation of China61271153.
2016-11-08(万方平台首次上网日期,不代表论文的发表时间)
3011-3017