变压器故障特征量可信度的关联规则分析
变压器在线监测得到的多个特征量对于不同故障类别的潜在信息量不一样,量化各特征量与特定故障类型之间的关联度将对变压器的潜在故障诊断和预测都有着很重要的作用。为此,利用布尔型离散化方法和基于ChiMerge算法的多值离散化方法分别对变压器在线监测的连续数据进行离散化,再利用改进的Apriori关联规则数据挖掘算法计算多个变压器在线监测特征量与各个故障类型之间的可信度。最后在实例中进行了多个特征量与多个故障类型的可信度的计算,结果表明特定特征量与故障类型之间确实存在不同的关联程度,量化关联程度能有效提高故障诊断算法的效率;另外还在实例中进行了多值的关联规则挖掘,结果表明关联规则可以应用在对故障类型划分较细的变压器故障诊断。
关联规则、离散化、故障诊断、电力变压器、Apriori算法、可信度
38
TM343(电机)
国家重点基础研究发展计划973计划2009CB724506
2012-05-05(万方平台首次上网日期,不代表论文的发表时间)
共7页
82-88