期刊专题

10.3969/j.issn.1003-6520.2007.05.023

粒子群神经网络混合算法在负荷预测中的应用

引用
电力系统负荷预测结果的准确性关系到电力系统的调度运行、生产计划和供电质量,为此在研究短期负荷预测中应用了粒子群PSO和BP神经网络相结合的混合算法.该算法先应用粒子群优化算法算出BP神经网络的连接权向量和阈值,每次迭代求出最优粒子的权向量和阈值及BP网络在这组权向量和阈值的实际输出值,最后得出第i个粒子的适应度函数.与其他方法相比,该算法预测精度较高:平均相对误差≤1.48%,最大相对误差≤4.10%,而且收敛速度快,预测结果满足短期负荷预测误差要求.

粒子群算法、PSO-BP混合算法、优化算法、日负荷预测、预测精度、相对误差

33

TM133;TM135(电工基础理论)

福建省教育厅科研项目JB06045

2007-07-02(万方平台首次上网日期,不代表论文的发表时间)

共4页

90-93

暂无封面信息
查看本期封面目录

高电压技术

1003-6520

42-1239/TM

33

2007,33(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn