期刊专题

10.3969/j.issn.1673-1255.2018.04.007

自适应加权的二阶总广义变分图像去噪

引用
针对全变分(total variation,TV)模型在图像去噪过程中易于产生"阶梯效应"的缺点,提出了一种改进的二阶总广义变分(total generalized variation,TGV)图像去噪模型.新模型中,利用Kirsch边缘检测算子提取到的图像纹理信息,在二阶TGV去噪模型的正则项中引入一个边缘指示函数引导扩散.实验表明,与经典的TV去噪模型和二阶TGV去噪模型相比,新模型无论是在视觉效果上还是在峰值信噪比(PSNR)和均方误差(MSE)方面都有明显的改善,在有效地去除噪声的同时自适应地保护图像的边缘信息和细小的纹理结构信息.

全变分(TV)模型、阶梯效应、二阶总广义变分(TGV)模型、Kirsch边缘检测算子

33

TP391.413(计算技术、计算机技术)

2018-10-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

31-34,78

相关文献
评论
暂无封面信息
查看本期封面目录

光电技术应用

1673-1255

21-1495/TN

33

2018,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn