期刊专题

10.3969/j.issn.1673-1255.2016.04.015

增强层次CNN模型在目标识别应用中的研究

引用
受生物视觉信息处理机制启发的目标识别是当前计算机视觉领域研究的热点之一,其主要思想是对大脑视觉皮层中视觉信息的层次性处理过程进行模拟,构建数学模型来实现目标识别。然而传统的层次化计算模型通常以前馈信息传递为基础,层与层之间采用被动的硬连接方式,强调对视觉信息的多层分解,却较少涉及视觉神经系统的主动感知和学习过程。因此选择以同时具备稀疏连接思想和自我学习机制、并且具备良好网络拓扑结构的卷积神经网络为框架,基于经典卷积神经网络模型,融入分层和仿生的思想,提出新的基于视觉神经增强层次CNN模型——IH-CNN。实验结果表明,IH-CNN模型可以较好的解决大规模图像中的目标识别问题,目标识别准确率高达84%。

生物视觉、目标识别、Caltech-101、卷积神经网络

31

TP391.4(计算技术、计算机技术)

国家自然科学基金项目61373089

2016-11-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

66-72

相关文献
评论
暂无封面信息
查看本期封面目录

光电技术应用

1673-1255

21-1495/TN

31

2016,31(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn