期刊专题

10.3969/j.issn.1673-1255.2013.04.012

基于不变矩和改进BP神经网络的目标识别

引用
  基于Hu不变矩的尺度不变性,以图像的不变矩特征作为输入,建立基于批训练的改进型误差反向传播(BP)神经网络。运用基于Bayesian正则化的Levenberg-Marquardt算法优化误差函数计算精度,改进网络,实现参数最优化组合。通过MAT?LAB环境,建立了基于不变矩的改进BP神经网络目标识别模型。实验表明,该方法实现了对目标的准确识别和对干扰图像的正确判断。

不变矩、BP神经网络、目标识别、Levenberg-Marquardt算法

TP391(计算技术、计算机技术)

2013-08-03(万方平台首次上网日期,不代表论文的发表时间)

共6页

49-54

相关文献
评论
暂无封面信息
查看本期封面目录

光电技术应用

1673-1255

21-1495/TN

2013,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn