期刊专题

一种基于神经网络的动态获取点云编码方法

引用
由于点云数据的稀疏性和无序性,导致其很难被压缩到较小的空间中,为此,可以将三维点云图像转换成二维距离图像,然后使用传统方法进行压缩.但传统方法在压缩过程中难以去除点云数据的相关性,对此,本文设计了一种基于神经网络的改变点云数据分布特点的方法.我们在神经网络中加入了广义除法归一化层,通过线性变换级联非线性变换,实现对点云数据的映射和高斯化,增强点云数据的空间相关性.同时,在解码步骤中使用残差网络增加网络深度,这将使网络有更好的泛化性能,从而达到更好的图像编码效果.与其他方法相比,本文针对二维点云距离图像对网络进行了优化,并且在保持相同质量情况下,码率节省了4.78%~5.63%,取得了更好的图像压缩编码效果.

三维、激光雷达、点云、图像压缩、GDN层、神经网络

29

TP391;TN919.81;U495

福建省自然科学基金资助项目;中国福建光电信息科学与技术创新实验室闽都创新实验室资助项目

2022-10-11(万方平台首次上网日期,不代表论文的发表时间)

共5页

121-125

暂无封面信息
查看本期封面目录

广播电视网络

29

2022,29(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn