期刊专题

10.13475/j.fzxb.20210907408

基于快速自适应经验模态分解的高速经编机振动分析

陈志昊包文杰李富才静波黄朝林孙建文
上海交通大学;
引用
(0)
收藏
针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法.首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取.将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考.

高速经编机、振动分析、自适应经验模态分解、相关性分析、故障诊断

44

TS103;TN911.72;TH165(纺织工业、染整工业)

军科委基础加强计划重点基础研究项目2019-JCJQ-ZD-133-00

2023-05-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

204-211

暂无封面信息
查看本期封面目录

纺织学报

EICSTPCD北大核心

0253-9721

11-5167/TS_x000d_

44

2023,44(4)

月卡
- 期刊畅读卡 -
¥68
季卡
- 期刊畅读卡 -
¥128
年卡
- 期刊畅读卡 -
¥199
年卡
- 超级文献套餐 -
¥499
查重
- 个人文献检测 -
快速入口
开通阅读并同意
《万方数据会员(个人)服务协议》

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn