期刊专题

10.3969/j.issn.1004-4957.2020.11.011

基于近红外光谱和OPLS-DA的不同牌号卷烟分类识别方法研究

引用
为了对卷烟牌号进行准确分类鉴别,提出了一种基于近红外光谱(NIRS)分析技术结合有监督的模式识别快速鉴别卷烟牌号的新方法.利用标准正态变量变换(SNV)、多元散射校正(MSC)、一阶导数(FD)、二阶导数(SD)和Savitzky-Golay平滑(SG)及其相结合的光谱预处理方法对烟丝光谱进行预处理,通过近红外光谱结合主成分分析(PCA)、偏最小二乘判别分析(PLS-DA)和正交偏最小二乘判别分析(OPLS-DA)3种模式识别方法对不同牌号烟丝进行分类识别研究,并采用分类识别正确率作为评价指标.实验结果表明:(1)烟丝近红外光谱主成分得分图交叉重叠,区分不明显,PCA无法识别出5种牌号的成品烟丝;(2)烟丝光谱经MSC+ FD预处理后的PLS-DA模型可得到较好的识别效果,校正集和测试集的分类识别正确率分别为100%和98.3%;(3)烟丝光谱经MSC+ SD预处理后的OPLS-DA模型的模式识别效果最好,模型对自变量拟合指数(R2X),因变量的拟合指数(R2Y)和模型预测指数(Q2)分别为0.485、0.907和0.748,近红外光谱校正集和测试集的分类识别正确率均为100%.说明近红外光谱技术结合有监督模式识别方法OPLS-DA建立的烟丝牌号分类模型具有高效快速、准确无损的优点,为卷烟烟丝分类提供了一种新的快速鉴别方法.

近红外光谱、成品烟丝、分类识别、主成分分析法(PCA)、偏最小二乘判别分析法(PLS-DA)、正交偏最小二乘判别分析法(OPLS-DA)

39

O657.33;S646.12(分析化学)

湖北中烟工业有限责任公司项目2018A029JC02

2020-12-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

1385-1391

相关文献
评论
暂无封面信息
查看本期封面目录

分析测试学报

1004-4957

44-1318/TH

39

2020,39(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn