基于神经网络模型的海南变电站接地网Q235钢腐蚀率预测
运用MATLAB软件在土壤腐蚀等级评价指标上随机生成了2 000组训练样本和200组测试样本来增强网络的鲁棒性(抗变换性)和样本识别准确性,找出了适合BP和RBF神经网络模型的结构参数,构建出了性能和稳定性都较好的BP和RBF神经网络模型.用现场采集的海南省变电站土壤腐蚀相关数据分别对已建并训练的BP和RBF神经网络模型进行检验,并用这两种模型对变电站接地网普遍使用的Q235钢的腐蚀速率进行了预测.结果表明:两种模型预测的准确率均在95%以上;BP神经网络模型在结构和运算方面比RBF神经网络模型好,但需要设定的参数多、较繁琐,而RBF神经网络模型只需设定Spread值,较简单,且RBF神经网络模型在训练精度和泛化能力方面均优于BP神经网络模型.
Q235钢、接地网腐蚀率、RBF神经网络、BP神经网络、预测
38
TG172(金属学与热处理)
北京市自然科学基金2132038
2017-09-27(万方平台首次上网日期,不代表论文的发表时间)
共6页
573-577,588