期刊专题

10.12422/j.issn.1672-6952.2023.05.014

基于神经网络的银行长期存款客户预测研究

引用
因客户数据量庞大、各种理财产品的兴起和疫情的短期冲击,银行面临的压力越来越大,使用数据分析和预测方法能够更大程度提升银行的业务量.使用传统的分类树模型无法根据客户信息对可能长期存款的客户做出更加精准的预测,从而导致无法对客户进行精准营销.因此,提出了一种分三层搭建的神经网络模型.通过实验,对葡萄岛银行机构客户数据进行预测,并和传统的决策树模型、随机森林模型、Adaboost模型、XGBoost模型的预测结果进行了对比.结果表明,相比于其他四种模型,神经网络模型预测效果更好,模型评估AUC达到了0.977 7,准确率达到了99.06%.

神经网络、决策树、随机森林、Adaboost模型、XGBoost模型、精准营销

43

TP391(计算技术、计算机技术)

辽宁省社会科学规划基金重点项目L19AGL010

2023-11-14(万方平台首次上网日期,不代表论文的发表时间)

共6页

91-96

相关文献
评论
暂无封面信息
查看本期封面目录

辽宁石油化工大学学报

1672-6952

21-1504/TE

43

2023,43(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn