期刊专题

10.12422/j.issn.1672-6952.2023.05.012

基于改进双向循环神经网络的变压器故障诊断模型研究

引用
针对传统神经网络对变压器时序关系挖掘缺失、分类泛化性差、对异构数据分类准确率低的问题,提出了一种基于改进的双向循环神经网络的变压器故障诊断模型.该模型通过双向循环神经网络进行特征提取,将前后时刻的特征进行融合,采用多核学习支持向量机方法对特征数据进行分类,在多核学习支持向量机中进行核融合,从而提高特征数据分类的准确性.数值仿真分析了时序通道对长短时序网络诊断性能的影响,以及多核学习对支持向量机泛化能力和对异构数据处理能力的影响,通过变压器故障数据分类试验验证了基于多核学习支持向量机的双向循环神经网络模型的正确性和有效性.结果表明,基于多核学习支持向量机的双向循环网络诊断性能较好,与几种常用的神经网络相比,模型预测正确率更高.

变压器故障诊断、双向循环神经网络、多核学习、支持向量机、核融合、长短期记忆网络

43

TM407(变压器、变流器及电抗器)

辽宁省教育厅科学研究项目;辽宁石油化工大学科研启动基金项目

2023-11-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

75-83

暂无封面信息
查看本期封面目录

辽宁石油化工大学学报

1672-6952

21-1504/TE

43

2023,43(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn