期刊专题

10.3969/j.issn.1672-6952.2013.04.022

基于改进QPSO算法的小波神经网络参数优化

引用
针对传统的小波神经网络在参数优化过程中所采用的梯度下降法容易产生局部最优,提出了一种改进的量子行为PS O算法。新算法通过在最优平均值的全局搜索点中加入权重系数,用于改善粒子群的全局、局部搜索能力和收敛速度,当粒子进化到后期,满足早熟条件时,粒子群在该维上发生变异,重新初始化后的位置均匀分布在可行区域上,用于提高搜索精度。仿真实验结果表明,改进QPSO算法比常规网络训练方法在寻优能力方面更加有效。

权重系数、小波神经网络、量子行为粒子群算法、个体变异、优化

TP391(计算技术、计算机技术)

2014-01-23(万方平台首次上网日期,不代表论文的发表时间)

共4页

91-94

暂无封面信息
查看本期封面目录

辽宁石油化工大学学报

1672-6952

21-1504/TE

2013,(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn