10.3969/j.issn.1673-9604.2017.07.111
两种减少噪声对双支持向量机影响的方法
双支持向量机是Jayadeva等人在2007年提出的一种新的支持向量机.在处理模式分类问题时,双支持向量机的训练速度远远超过传统的支持向量机,计算效率大约是传统支持向量机的四倍.但双支持向量机没有考虑到不同样本点对最优超平面所产生的影响,而是同等对待所有的训练数据样本来构造最优超平面,从而无法降低噪声对分类面的影响.为了克服这个缺点,总结提出了两种方法,一是将模糊技术应用于双支持向量机中,对不同的样本采用不同的惩罚权系数,找到适合的隶属度函数来提高双支持向量机的分类准确率;二是将超球体技术与双支持向量机相结合,清除数据样本中的噪声,减小系统结构误差.实验证明这两种方法能有效的减少噪声的影响.
双支持向量机、模糊隶属度、超球体
TP3;TP1
2017-09-08(万方平台首次上网日期,不代表论文的发表时间)
共1页
133