期刊专题

10.12409/j.fjyl.202303010108

可持续建成环境研究的机器学习应用进展与展望

引用
[目的]大数据、物联网和人工智能技术正在经历快速发展阶段,其中机器学习的应用尤为瞩目,探索机器学习对可持续建成环境研究的影响具有理论和实践价值.[方法]基于文献综述,聚焦城市公共健康、能源碳排放、气候环境、生态系统、绿色出行5个可持续建成环境重要议题,详述机器学习的概念、分类、重要算法及关键应用.[结果]提出机器学习应用预测性有余解释力不足的特点,梳理机器学习发展从预测性到解释性的趋势,分析机器学习应用对研究的影响.[结论]结果表明:解释性方法和可读模型增多,研究目的更加侧重决策解读和规律总结,但基于实证研究的因果机制探索仍较少.基于此,比较分析了机器学习在不同议题中的典型应用,展望未来的发展前景.

人工智能、解释性机器学习、公共健康、能源碳排放、气候环境、生态系统

30

TU984;TU986;TP181(地下建筑)

国家自然科学基金;国家重点研发计划;上海市自然科学基金;上海市科技支撑双碳专项

2023-08-09(万方平台首次上网日期,不代表论文的发表时间)

共9页

51-59

相关文献
评论
暂无封面信息
查看本期封面目录

风景园林

1673-1530

11-5366/S

30

2023,30(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn