期刊专题

10.12046/j.issn.1000-5277.2023.03.012

基于GA-BP神经网络的颗粒阻尼器减振特性预测

引用
提出了一种基于遗传算法改进的BP神经网络(GA-BP)的颗粒阻尼效应预测模型.首先通过悬臂梁阻尼检测实验建立数据集,然后对建立的数据集进行训练非线性复杂模型,用于描述颗粒阻尼器的阻尼效应.为了进一步验证所提模型的有效性,通过CA-YD-1181 压电传感器采集相关数据进行二次验证.结果表明,与传统的BP神经网络预测模型相比,遗传算法优化后的模型能够通过不同参数的变化对颗粒阻尼器减振效果进行精准预测,收敛速度提高了近 36.8%.该模型具有良好的拟合效果,能准确、合理地预测阻尼特性,并调整颗粒阻尼器的相关参数.

颗粒阻尼器、BP神经网络、遗传算法、预测模型

39

TP391.4(计算技术、计算机技术)

国家自然科学基金51875490

2023-05-25(万方平台首次上网日期,不代表论文的发表时间)

共10页

106-115

相关文献
评论
暂无封面信息
查看本期封面目录

福建师范大学学报(自然科学版)

1000-5277

35-1074/N

39

2023,39(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn