期刊专题

10.12178/1001-0548.2022128

基于小波采样理论的新型准则函数

引用
为解决在噪声环境下建模的过拟合问题,基于小波采样理论,提出一种适用于小波神经网络的新型准则函数,并设计了相应的训练算法.这种算法能够利用样本分布和误差训练输入和输出层权值,因此可以大大提高小波神经网络的学习效率.理论和试验表明,新型准则函数有力地保证了小波神经网络的泛化能力,其相应的算法具有全局收敛性,并对噪声变化具有良好的鲁棒性.

广义采样、神经网络、过拟合、小波采样

53

TN911.97

2024-02-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

102-109

暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/TN

53

2024,53(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn