期刊专题

10.12178/1001-0548.2020153

基于搜索偏好知识的复杂多模差分进化算法

引用
针对复杂多模优化问题,提出一种基于搜索偏好知识的差分进化算法PKLSHADE.PKLSHADE将先验搜索偏好知识注入到种群的进化过程,在不同的进化阶段对种群的多样性和集约性区分考虑,进化早期重视差分扰动以增强算法的全局开发能力,进化后期更多围绕当前最优解进行局部精细搜索.同时,基于搜索偏好知识的变异策略能够实现差分进化算法全局开发和局部搜索的自适应平滑过渡,避免两搜索阶段的硬切换.在CEC2017复杂混合多模函数上的实验结果及统计分析表明,PKLSHADE在最优解的精度、算法的稳定性等方面均优于LSHADE、EBLSHADE、jSO及AMECoDEs等近年来的优秀差分进化算法.

差分进化、复杂多模优化、变异策略、偏好知识

49

TP18(自动化基础理论)

国家自然科学基金61663023,61763028

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共8页

875-882

相关文献
评论
暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

49

2020,49(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn