10.3969/j.issn.1001-0548.2017.05.003
基于证据理论的群指纹融合室内定位方法
室内定位的主要挑战是室内的多径传播及非平稳信道环境,传统基于信号强度指纹的单指纹室内定位方法由于受环境变化影响较大,稳健性较差且精度较低.针对此问题,提出一种基于D-S证据理论的群指纹融合高精度室内定位方法.在建库阶段,利用室内阵列信号接收模型,首先通过计算阵列接收信号的不同统计特性构建包括信号强度、协方差矩阵、信号子空间及四阶累积量组成的群指纹库,再对群指纹进行神经网络训练获取针对每种指纹的神经网络分类器;在实测阶段,把实测数据的上述4种变换输入到训练好的神经网络分类器中,最后利用D-S证据理论对神经网络分类器的分类结果进行融合,给出最终的定位结果.仿真结果证明了算法的有效性及可行性.该算法可充分发挥指纹信息的集群效应,对噪声、多径传播等具有较好的稳健性,是一种高精度的室内定位新方法.
BP神经网络、D-S证据理论、群指纹融合、室内定位、多径
46
TN96
国家自然基金面上项目61671137;中央高校基本业务费ZYGX2016J028;山东省自然科学基金教育厅联合专项ZR2014JL027
2017-11-09(万方平台首次上网日期,不代表论文的发表时间)
共7页
654-659,665