期刊专题

10.3969/j.issn.1001-0548.2014.04.025

基于中心加权的局部核向量机算法

引用
为了解决大规模非线性分类中局部学习的不平衡性问题,提出一种改进的局部支持向量机算法,在高维特征空间中聚类后,为每一个簇构造局部非线性支持向量机。为了克服簇内样本的分布不均衡问题,根据闭合超平面不规则边界的几何特点,经过梯度下降寻找稳定均衡向量,以此构造簇几何中心;再结合簇密度中心共同约束类心形成双重加权中心。然后通过求解加权最小闭球问题实现对大规模样本向量的分类。对照实验显示,除了个别数据集以外,改进的算法在训练时间、测试时间以及测试精度等方面都比另外两种分类算法表现更佳。

双中心、超曲面、局部支持向量机、最小闭球、稳定均衡向量

TP181(自动化基础理论)

2014-09-17(万方平台首次上网日期,不代表论文的发表时间)

共6页

612-617

暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

2014,(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn