期刊专题

10.3969/j.issn.1001-0548.2006.04.006

基于DCT和KDA的人脸特征提取新方法

引用
提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征.基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,"留一法"识别率为99.5%.仿真结果表明:该方法有效地滤除了人脸图像中的高频干扰信息,明显增强了特征的辨别能力,同时显著地降低了特征维数和计算复杂度.

人脸识别、核辨别分析、最近邻分类器

35

TN911.73;TP391.41

江苏省重点实验室基金KJS03036

2006-09-25(万方平台首次上网日期,不代表论文的发表时间)

共4页

450-453

暂无封面信息
查看本期封面目录

电子科技大学学报

1001-0548

51-1207/T

35

2006,35(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn