期刊专题

10.16157/j.issn.0258-7998.233812

一种多教师模型知识蒸馏深度神经网络模型压缩算法

引用
为了能将庞大的深度学习模型压缩后部署到算力和存储能力有限的设备中时尽可能减小精度损失,对知识蒸馏模型压缩方法进行研究,提出了一种改进后带筛选的多教师模型知识蒸馏压缩算法.利用多教师模型的集成优势,以各教师模型的预测交叉熵为筛选的量化标准筛选出表现更好的教师模型对学生进行指导,并让学生模型从教师模型的特征层开始提取信息,同时让表现更好的教师模型在指导中更具有话语权.在CIFAR100数据集上的VGG13等分类模型实验结果表明,与其他压缩算法相比在最终得到的学生模型大小相同的情况下,精度上有着更好的表现.

模型压缩、知识蒸馏、多教师模型、交叉熵、特征层

49

TP399(计算技术、计算机技术)

福建省科技计划引导性项目2022H0042

2023-08-16(万方平台首次上网日期,不代表论文的发表时间)

共6页

7-12

暂无封面信息
查看本期封面目录

电子技术应用

0258-7998

11-2305/TN

49

2023,49(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn