期刊专题

10.16157/j.issn.0258-7998.2016.07.029

基于MC的风电场参数预测模型的误差修正

引用
风速的随机性和间歇性等特点使得目前风电场参数预测模型存在较大的预测误差,对此提出了采用马尔科夫链(MC)方法对模型的预测误差进行修正.分别求出参数的实际值与模型预测值之间的误差序列,利用模糊C-均值聚类算法对其进行状态划分;根据各误差状态计算出MC状态转移概率矩阵,进而计算模型预测误差修正值,最终得到精度较高的预测值.采用MC方法分别对广义回归神经网络(GRNN)模型、T-S模糊神经网络模型以及Elman神经网络模型的预测误差进行修正,并应用MC修正后的3种模型对山西某风电场测风塔不同步长风速进行预测仿真实验研究,分析讨论了MC对各预测模型误差的修正效果.仿真结果表明,所提出的误差修正方法能够有效提高测风塔风速预测精度,为预测模型的误差修正提供了一种有效的实用的方法.

误差修正、马尔科夫链、预测模型、风速预测

42

TP183(自动化基础理论)

国家自然科学基金51277127

2016-07-29(万方平台首次上网日期,不代表论文的发表时间)

共5页

114-118

暂无封面信息
查看本期封面目录

电子技术应用

0258-7998

11-2305/TN

42

2016,42(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn