期刊专题

10.16157/j.issn.0258-7998.2016.02.003

一种基于OpenCL的高能效并行KNN算法及其GPU验证

引用
近年来数据分类技术已经被广泛应用于各类问题中,作为最重要的分类算法之一,K最近邻法(KNN)也被广泛使用.在过去的近50年,人们就如何提高KNN的并行性能做出巨大努力.基于CUDA的KNN并行实现算法——CUKNN算法证明KNN在GPU上的并行实现比在CPU上串行实现的速度提升数十倍,然而,CUDA在实现过程中包含了大量的冗余计算.提出了一种并行冒泡的新型KNN并行算法,并通过OpenCL,在以GPU作为计算核心的异构系统上进行验证,结果显示提出的方法比CUDA快16倍.

KNN、GPGPU、OpenCL、并行冒泡、并行计算

42

TP311(计算技术、计算机技术)

2016-05-17(万方平台首次上网日期,不代表论文的发表时间)

共3页

14-16

暂无封面信息
查看本期封面目录

电子技术应用

0258-7998

11-2305/TN

42

2016,42(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn