期刊专题

10.3969/j.issn.0258-7998.2009.05.059

基于EKF神经网络的扩频系统抗窄带干扰技术

引用
针对消除扩频系统中的窄带干扰问题,文章提出了一种基于扩展卡尔曼滤波(EKF)的递归神经网络预测器(RNNP).扩展卡尔曼滤波被用于反馈修改递归神经网络的权值系数,从而准确地估计干扰信号,具有收敛速度快、预测精度高和适用于非线性处理的优点.仿真结果表明:基于EKF学习算法的RNNP相对于自适应线性最小均方差(LMS)干扰预测器、自适应近似条件均值(ACM)干扰预测器和基于实时递推学习(RTRL)算法的RNNP在预测误差的均方误差、收敛速度、信噪比改善量方面上有不同程度的改进.

扩频系统、窄带干扰、递归神经网络、扩展卡尔曼滤波

35

TN914.42

国家自然科学基金项目60704018

2009-06-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

116-119

暂无封面信息
查看本期封面目录

电子技术应用

0258-7998

11-2305/TN

35

2009,35(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn