期刊专题

10.3969/j.issn.1672-1454.2006.06.024

一类分形插值函数的分数阶微积分

引用
介绍了分形插值函数和迭代函数系统以及v阶黎曼-刘维尔分数阶积分、微分的概念和相关定理.由于分形插值函数满足应用分数阶微积分处理问题的条件,所以利用这些概念及分步积分的方法讨论了折线段分形插值函数的分数阶积分的连续性,可微性及哪些点是不可微的,进一步说明了该插值函数分数阶微分的连续性并指出其不连续点,用黎曼-刘维尔分数阶微积分与分形插值函数结合起来研究,目的是想设法跟经典微积分一样,能找出函数上在该点的微积分的具体的实际应用意义.这些理论为研究分形插值函数的分数阶微积分的实际应用意义提供了一些理论基础.

分形插值函数、迭代函数系统、分数阶微积分

22

O1(数学)

2007-03-05(万方平台首次上网日期,不代表论文的发表时间)

共5页

106-110

暂无封面信息
查看本期封面目录

大学数学

1672-1454

34-1221/O1

22

2006,22(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn