期刊专题

10.13335/j.1000-3673.pst.2021.0384

基于谱图论和图卷积神经网络的直流电网节点电压估计研究

引用
深度学习在电力系统领域应用已非常广泛,潮流计算是电力系统重要的基础性任务之一,传统算法依赖于迭代求解,不适用于快速估计场合.直流电网的潮流求解实质上是节点电压求解问题,为此,提出了一种基于谱图论和图卷积神经网络(graph convolution neural network,GCN)的直流电网电压估计模型.通过网络拓扑拉普拉斯矩阵的特征向量实现时域直流电网到谱域直流电网的空间正交变换,从而完成时域电气量信息与网络结构信息之间的数据融合,并配合图卷积网络实现对数据特征的有效提取,进而完成从初始谱域电气量到稳态时域电气量之间的映射.仿真结果表明,所提模型能够较好地实现从初始电气量到稳态节点电压的映射,具有较高的电压估计准确度.

谱图论、图卷积神经网络、直流电网、电压估计、拉普拉斯矩阵

46

TM721(输配电工程、电力网及电力系统)

四川省科技计划资助项目2019YJ0114

2022-02-22(万方平台首次上网日期,不代表论文的发表时间)

共12页

521-531,中插9

相关文献
评论
暂无封面信息
查看本期封面目录

电网技术

1000-3673

11-2410/TM

46

2022,46(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn