期刊专题

10.13335/j.1000-3673.pst.2020.1124

基于约束并行LSTM分位数回归的短期电力负荷概率预测方法

引用
负荷概率预测能准确量化负荷的不确定性,为电力系统运行决策提供全面的预测信息.针对负荷的时序性特点以及现有分位数回归方法存在的分位数预测值交叉问题,提出了一种基于约束并行长短期记忆神经网络分位数回归的短期电力负荷概率预测方法.该方法结合长短期记忆神经网络与分位数回归,并行生成预测负荷的多个分位数结果,并加入考虑分位数预测值之间约束关系的组合层,以保证分位数预测值的合理性.实际算例结果表明,与常见负荷概率预测方法相比,所提方法不仅具有更高的预测效率,而且能获得更合理的分位数预测结果.

负荷概率预测、长短期记忆神经网络、分位数回归、分位数交叉、深度学习技术

45

TM715(输配电工程、电力网及电力系统)

国家自然科学基金51807109

2021-05-12(万方平台首次上网日期,不代表论文的发表时间)

共8页

1356-1363

暂无封面信息
查看本期封面目录

电网技术

1000-3673

11-2410/TM

45

2021,45(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn