10.13335/j.1000-3673.pst.2019.0150
基于模型自适应选择融合的智能电表故障多分类方法


智能电表故障的准确分类能大幅提高用电采集系统运维能力.融合多个分类模型的机器学习算法是解决该问题的有效手段,但现有方法无法解决输出分别为样本所属各类别概率值和类别标签的两个基分类模型融合问题.提出一种基于模型自适应选择融合的智能电表故障多分类方法.首先,分别取各基分类模型对各类样本分类准确率最大值,将其与阈值系数的乘积作为该类样本准确率阈值,实现阈值自适应调整;然后对各类样本分别计算基分类模型的准确率差值,与阈值进行比较设置样本融合标记;最后根据该标记选择参与融合的基分类模型,结合输出为概率值的基分类模型的Top-N分类标签集,得到模型融合结果.在10组KEEL公共数据集上验证了所提融合方法的有效性,…展开v
智能电表故障多分类、模型融合、Top-N分类标签集、自适应选择
43
TM721(输配电工程、电力网及电力系统)
国家电网有限公司总部科技项目5442JL170006
2019-06-26(万方平台首次上网日期,不代表论文的发表时间)
共7页
1955-1961