期刊专题

基于非参数GARCH的时间序列模型在日前电价预测中的应用

引用
电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序列模型对日前电价进行预测。利用小波变换将历史电价序列分解重构概貌序列和细节序列,分别建立累积式自回归滑动平均(auto-regressive integrated moving average, ARIMA)模型进行预测,采用非参数GARCH模型对电价序列预测残差的随机波动率进行建模,从而提高对价格波动性的预测能力和ARIMA模型的预测精度。将该模型应用于美国宾夕法尼亚-新泽西-马里兰(Pennsylvania.NewJersey—Maryland,PJM)电力市场的日前电价预测。算例结果表明,非参数GARCH模型可以更好地拟合电价序列剧烈波动的特性,该模型能够提高电价的预测精度。

电价预测、小波变换、累积式自回归滑动平均模型、非参数GARCH模型

36

TM715(输配电工程、电力网及电力系统)

中央高校基本科研业务费专项资金资助项目11QX80

2012-06-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

190-196

相关文献
评论
暂无封面信息
查看本期封面目录

电网技术

1000-3673

11-2410/TM

36

2012,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn