期刊专题

10.3321/j.issn:1000-3673.2007.03.015

基于累积式自回归动平均法和反向传播神经网络的短期负荷预测模型

引用
针对电力系统短期负荷的特点建立了将累积式自回归动平均法(autoregressive integrated moving average,ARIMA)和采用反向传播算法(back propagation,BP)的神经网络法相结合的短期负荷预测模型.该模型利用ARIMA方法对线性时间序列逼近能力强的特点首先对预测日负荷进行预测,然后应用BP神经网络方法对预测结果进行修正,因此克服了单一算法存在的不足.应用该模型对某地区电网进行负荷预测,结果表明该方法的预测效果较好.

短期负荷预测、累积式自回归动平均法(ARIMA)、BP神经网络、平滑性处理

31

TM715(输配电工程、电力网及电力系统)

2007-03-15(万方平台首次上网日期,不代表论文的发表时间)

共4页

73-76

相关文献
评论
暂无封面信息
查看本期封面目录

电网技术

1000-3673

11-2410/TM

31

2007,31(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn